Methyl-beta-cyclodextrin directly binds methylene blue and blocks both its cell staining and glucose uptake stimulatory effects.

نویسندگان

  • Jordan Scott
  • Andrew Tidball
  • Jeff M Uitvlugt
  • Mario Lucia
  • Douglas A Vander Griend
  • Larry L Louters
چکیده

GLUT1, the most ubiquitously expressed member of the GLUT family of glucose transporters, can be acutely activated by a variety of cell stresses. Methylene blue activates glucose transport activity of GLUT1 in L929 fibroblast cells presumably by a redox cycling of MB, which generates an oxidative stress. Data shown here reveal that methyl-beta-cyclodextrin (MCD) blocks both the staining of cells and activation of glucose uptake by directly binding to MB. MCD binding to MB was qualitatively demonstrated by a significantly slower dialysis rate of MB in the presence of MCD. Analysis of the complete spectra of aqueous MB solutions and MB plus MCD solutions by a factor analysis program called SIVVU indicated that these equilibria can be modeled by three species: MB monomer, MB dimer, and MCD-MB inclusion complex. The molar extinction coefficients for each species from 500 to 700nm were determined. The equilibrium association constant (K(a)) for MB dimer formation was measured at 5846+/-30M(-1) and the K(a) for formation of the MCD-MB complex was 310+/-10M(-1). MCD also dramatically enhances the destaining rate of MB-stained cells. The loss of MB from the cell is tightly correlated with the loss of activated glucose uptake. This suggests that the MB activation of glucose uptake is likely not caused by its redox cycling, but more likely the result of a specific interaction between MB and a protein directly involved in the activation of GLUT1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sphingomyelinase activates GLUT4 translocation via a cholesterol-dependent mechanism.

A basis for the insulin mimetic effect of sphingomyelinase on glucose transporter isoform GLUT4 translocation remains unclear. Because sphingomyelin serves as a major determinant of plasma membrane cholesterol and a relationship between plasma membrane cholesterol and GLUT4 levels has recently become apparent, we assessed whether GLUT4 translocation induced by sphingomyelinase resulted from cha...

متن کامل

Lack of toxicity of methylene blue chloride to supravitally stained human mammary tissues.

Methylene blue chloride (MBC) has been used previously as a supravital stain to facilitate the excision and subsequent transplantation of mammary epithelial structures by delineating them from surrounding connective tissue and fat, which stain less intensely. This study was undertaken to determine why MBC selectively stains epithelium and if it has any long-term toxicity to epithelial cells. Li...

متن کامل

Intoxication of epithelial cells by plasmid-encoded toxin requires clathrin-mediated endocytosis.

It has been shown that the autotransporter plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli (EAEC) produces cytotoxic and enterotoxic effects. Both effects can be explained by the proteolytic activity of Pet on its intracellular target alpha-fodrin (alphaII spectrin). In addition, Pet cytotoxicity and enterotoxicity depend on Pet serine protease activity, and on its internaliza...

متن کامل

Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha

The present paper has examined the degrading ability of phenol-oxidizing bacterium, Ralstonia eutropha, for biological removal of methylene blue (MB) from aqueous solutions under aerobic conditions. Results show that MB has been extensively eliminated as a co-metabolism in the presence of supplementary carbon (glucose) and nitrogen (yeast extract and peptone) sources and the experimental observ...

متن کامل

Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha

The present paper has examined the degrading ability of phenol-oxidizing bacterium, Ralstonia eutropha, for biological removal of methylene blue (MB) from aqueous solutions under aerobic conditions. Results show that MB has been extensively eliminated as a co-metabolism in the presence of supplementary carbon (glucose) and nitrogen (yeast extract and peptone) sources and the experimental observ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimie

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2009